6 resultados para COAGULATION-FACTOR

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth differentiation factor-5 (GDF-5) is a member of the transforming growth factor-β superfamily, a family of proteins that play diverse roles in many aspects of cell growth, proliferation and differentiation. GDF-5 has also been shown to be a trophic factor for embryonic midbrain dopaminergic neurons in vitro (Krieglstein et al. 1995) and after transplantation to adult rats in vivo (Sullivan et al. 1998). GDF-5 has also been shown to have neuroprotective and neurorestorative effects on adult dopaminergic neurons in the substantia nigra in animal models of Parkinson’s disease (Sullivan et al. 1997, 1999; Hurley et al. 2004). This experimental evidence has lead to GDF-5 being proposed as a neurotrophic factor with potential for use in the treatment of Parkinson’s disease. However, it is not know if GDF-5 is expressed in the brain and whether it plays a role in dopaminergic neuron development. The experiments presented here aim to address these questions. To that end this thesis is divided into five separate studies each addressing a particular question associated with GDF-5 and its expression patterns and roles during the development of the rat midbrain. Expression of the GDF-5 in the developing rat ventral mesencephalon (VM) was found to begin at E12 and peak on E14, the day that dopaminergic neurons undergo terminal differentiation. In the adult rat, GDF-5 was found to be restricted to heart and brain, being expressed in many areas of the brain, including striatum and midbrain. This indicated a role for GDF-5 in the development and maintenance of dopaminergic neurons. The appropriate receptors for GDF-5 (BMPR-II and BMPR-Ib) were found to be expressed at high levels in the rat VM at E14 and BMPR-II expression was demonstrated on dopaminergic neurons in the E13 mouse VM. GDF-5 resulted in a three-fold increase in the numbers of dopaminergic neurons in cultures of E14 rat VM, without affecting the numbers of neurones or total cells. GDF-5 was found to increase the proportion of neurons that were dopaminergic. The numbers of Nurr1-positive cells were not affected by GDF-5 treatment, but GDF-5 did increase the numbers of Nurr1- positive cells that expressed tyrosine hydroxylase (TH). Taken together this data indicated that GDF-5 increases the conversion of Nurr1-positive, TH-negative cells to Nurr1-positive, TH-positive cells. In GDF-5 treated cultures, total neurite length, neurite arborisation and somal area of dopaminergic were all significantly increased compared to control cultures. Thus this study showed that GDF-5 increased the numbers and morphological differentiation of VM dopaminergic neurones in vitro. In order to examine if GDF-5 could induce a dopaminergic phenotype in neural progenitor cells, neurosphere cultures prepared from embryonic rat VM were established. The effect of the gestational age of the donor VM on the proportion of cell types generated from neurospheres from E12, E13 and E14 VM was examined. Dopaminergic neurons could only be generated from neurospheres which were prepared from E12 VM. Thus in subsequent studies the effect of GDF-5 on dopaminergic induction was examined in progentior cell cultures prepared from the E12 rat VM. In primary cultures of E12 rat VM, GDF-5 increased the numbers of TH-positive cells without affecting the proliferation or survival of these cells. In cultures of expanded neural progenitor cells from the E12 rat VM, GDF-5 increased the expression of Nurr1 and TH, an action that was dependent on signalling through the BMPR-Ib receptor. Taken together, these experiments provide evidence that GDF-5 is expressed in the developing rat VM, is involved in both the induction of a dopaminergic phenotype in cells of the VM and in the subsequent morphological development of these dopaminergic neurons

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute myeloid leukaemia refers to cancer of the blood and bone marrow characterised by the rapid expansion of immature blasts of the myeloid lineage. The aberrant proliferation of these blasts interferes with normal haematopoiesis, resulting in symptoms such as anaemia, poor coagulation and infections. The molecular mechanisms underpinning acute myeloid leukaemia are multi-faceted and complex, with a range of diverse genetic and cytogenetic abnormalities giving rise to the acute myeloid leukaemia phenotype. Amongst the most common causative factors are mutations of the FLT3 gene, which codes for a growth factor receptor tyrosine kinase required by developing haematopoietic cells. Disruptions to this gene can result in constitutively active FLT3, driving the de-regulated proliferation of undifferentiated precursor blasts. FLT3-targeted drugs provide the opportunity to inhibit this oncogenic receptor, but over time can give rise to resistance within the blast population. The identification of targetable components of the FLT3 signalling pathway may allow for combination therapies to be used to impede the emergence of resistance. However, the intracellular signal transduction pathway of FLT3 is relatively obscure. The objective of this study is to further elucidate this pathway, with particular focus on the redox signalling element which is thought to be involved. Signalling via reactive oxygen species is becoming increasingly recognised as a crucial aspect of physiological and pathological processes within the cell. The first part of this study examined the effects of NADPH oxidase-derived reactive oxygen species on the tyrosine phosphorylation levels of acute myeloid leukaemia cell lines. Using two-dimensional phosphotyrosine immunoblotting, a range of proteins were identified as undergoing tyrosine phosphorylation in response to NADPH oxidase activity. Ezrin, a cytoskeletal regulatory protein and substrate of Src kinase, was selected for further study. The next part of this study established that NADPH oxidase is subject to regulation by FLT3. Both wild type and oncogenic FLT3 signalling were shown to affect the expression of a key NADPH oxidase subunit, p22phox, and FLT3 was also demonstrated to drive intracellular reactive oxygen species production. The NADPH oxidase target protein, Ezrin, undergoes phosphorylation on two tyrosine residues downstream of FLT3 signalling, an effect which was shown to be p22phox-dependent and which was attributed to the redox regulation of Src. The cytoskeletal associations of Ezrin and its established role in metastasis prompted the investigation of the effects of FLT3 and NADPH oxidase activity on the migration of acute myeloid leukaemia cell lines. It was found that inhibition of either FLT3 or NADPH oxidase negatively impacted on the motility of acute myeloid leukaemia cells. The final part of this study focused on the relationship between FLT3 signalling and phosphatase activity. It was determined, using phosphatase expression profiling and real-time PCR, that several phosphatases are subject to regulation at the levels of transcription and post-translational modification downstream of oncogenic FLT3 activity. In summary, this study demonstrates that FLT3 signal transduction utilises a NADPH oxidase-dependent redox element, which affects Src kinase, and modulates leukaemic cell migration through Ezrin. Furthermore, the expression and activity of several phosphatases is tightly linked to FLT3 signalling. This work reveals novel components of the FLT3 signalling cascade and indicates a range of potential therapeutic targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Venous thromboembolism (VTE) remains the leading cause of maternal mortality. Reports identified further research is required in obese and women post caesarean section (CS). Risk factors for VTE during pregnancy are periodically absent indicating the need for a simple and effective screening tool for pregnancy. Perturbation of the uteroplacental haemostasis has been implicated in placenta mediated pregnancy complications. This thesis had 4 main aims: 1) To investigate anticoagulant effects following a fixed thromboprophylaxis dose in healthy women post elective CS. 2) To evaluate the calibrated automated thrombogram (CAT) assay as a potential predictive tool for thrombosis in pregnancy. 3) To compare the anticoagulant effects of fixed versus weight adjusted thromboprophylaxis dose in morbidly obese pregnant women. 4) To investigate the LMWH effects on human haemostatic gene and antigen expression in placentae and plasma from the uteroplacental , maternal and fetal circulation. Tissue factor pathway inhibitor (TFPI), thrombin antithrombin (TAT), CAT and anti-Xa levels were analysed. Real-time PCR and ELISA were used to quantify mRNA and protein expression of TFPI and TF in placental tissue. In women post CS, anti-Xa levels do not reflect the full anticoagulant effects of LMWH. LMWH thromboprophylaxis in this healthy cohort of patients appears to have a sustained effect in reducing excess thrombin production post elective CS. The results of this study suggest that predicting VTE in pregnant women using CAT assay is not possible at present time. The prothrombotic state in pregnant morbidly obese women was substantially attenuated by weight adjusted but not at fixed LMWH doses. LMWH may be effective in reducing in- vivo thrombin production in the uteroplacental circulation of thrombophilic women. All these results collectively suggest that at appropriate dosage, LMWH is effective in attenuating excess thrombin generation, in low risk pregnant women post caesarean section or moderate to high risk pregnant women who are morbidly obese or tested positive for thrombophilia. The results of the studies provided data to inform evidence-based practice to improve the outcome for pregnant women at risk of thrombosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schizophrenia represents one of the world’s most devastating illnesses due to its often lifelong course and debilitating nature. The treatment of schizophrenia has vastly improved over recent decades with the discovery of several antipsychotic compounds; however these drugs are not without adverse effects that must be addressed to maximize their therapeutic value. Newer, atypical, antipsychotics are associated with a compilation of serious metabolic side effects including weight gain, insulin resistance, fat deposition, glucose dysregulation and ensuing co-morbidities such as type II diabetes mellitus. The mechanisms underlying these side effects remain to be fully elucidated and adequate interventions are lacking. Further understanding of the factors that contribute these side effects is therefore required in order to develop effective adjunctive therapies and to potentially design antipsychotic drugs in the future with reduced impact on the metabolic health of patients. We investigated if the gut microbiota represented a novel mechanism contributing to the metabolic dysfunction associated with atypical antipsychotics. The gut microbiota comprises the bacteria that exist symbiotically within the gastrointestinal tract, and has been shown in recent years to be involved in several aspects of energy balance and metabolism. We have demonstrated that administration of certain antipsychotics in the rat results in an altered microbiota profile and, moreover, that the microbiota is required for the full scale of metabolic dysfunction to occur. We have further shown that specific antibiotics can attenuate certain aspects of olanzapine and risperidone–induced metabolic dysfunction, in particular fat deposition and adipose tissue inflammation. Mechanisms underlying this novel link appear to involve energy utilization via expression of lipogenic genes as well as reduced inflammatory tone. Taken together, these data indicate that the gut microbiota is an important factor involved in the myriad of metabolic complications associated with antipsychotic therapy. Furthermore, these data support the future investigation of microbial-based therapeutics for not only antipsychotic-induced weight gain but also for tackling the global obesity epidemic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hereditary sensory autonomic neuropathy IV (HSAN IV) is an autosomal recessive disorder characterised by inability to feel pain and anhidrosis and is a consequence of defective NGF/TrkA signalling and growth of sensory and sympathetic neurons. Glucocortiocoid-induced tumour necrosis factors receptor (GITR), a transmembrane protein, activated by its specific ligand, GITRL, is well known for its role in the regulation of innate and acquired immune system responses. Recently, GITR was found to be required for NGF-dependant and extracellular signal-related kinase 1/2 (ERK1/2)-induced neurite growth and target innervation in the developing sympathetic nervous system (SNS). Given this novel role of GITR, it is possible that strategies targeting GITR have potential therapeutic benefit in promoting neurite growth in autonomic neuropathies such as HSAN IV. Using P1 mouse SCG neurons as a model, in addition to various SCG cell treatments, knock down models and transfection methods, we investigated whether GITR increases the sensitivity of sympathetic neurons to NGF; the region of GITR required for the enhancement of NGF-promoted growth, the signalling pathways downstream of GITR and how extensively GITR is involved in regulating peripheral innervation of the SNS. Results indicate that the region responsible for the growth promoting effects of GITR lies in its juxtamembrane intracellular region (here termed the growth promoting domain (GPD)) of GITR. The GPD of GITR activates ERK1/2 and inhibits nuclear factor kappa B (NF-κB) in an inverse fashion to provide an optimal cellular growth environment for P1 SCG neurons. While deleting the GPD of GITR had no effect on TrkA expression, constitutive phosphorylation of specific sites in the GPD reduced TrkA expression indicating a possible role for GITR in increasing the sensitivity of SCG neurons to NGF by the regulation of these sites, TrkA expression and subsequent NGF/TrkA binding. GITR appears to be heterogeneously required for NGF-promoted target innervation of SCG neurons in some organs, implying additional factors are involved in extensive NGF-target innervation of the SNS. In conclusion, this study answers basic biological questions regarding the molecular mechanism behind the role of GITR in the development of the SNS, and provides a basis for future research if GITR modulation is to be developed as a strategy for promoting axonal growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) are currently under investigation as repair agents in the preservation of cardiac function following myocardial infarction (MI). However concerns have emerged regarding the safety of acute intracoronary (IC) MSC delivery specifically related to mortality, micro-infarction and microvascular flow restriction post cell therapy in animal models. This thesis aimed to firstly identify an optimal dose of MSC that could be tolerated when delivered via the coronary artery in a porcine model of acute MI (AMI). Initial dosing studies identified 25x106 MSC to be a safe MSC cell dose, however, angiographic observations from these studies recognised that on delivery of MSC there was a significant adverse decrease in distal blood flow within the artery. This observation along with additional supportive data in the literature (published during the course of this thesis) suggested MSC may be contributing to such adverse events through the propagation of thrombosis. Therefore further studies aimed to investigate the innate prothrombotic activity of MSC. Expression of the initiator of the coagulation cascade initiator tissue factor (TF) on MSC was detected in high levels on the surface of these cells. MSC-derived TF antigen was catalytically active, capable of supporting thrombin generation in vitro and enhancing platelet-driven thrombus deposition on collagen under flow. Infusion of MSC via IC route was associated with a decreased coronary flow reserve when delivered but not when coadministered with an antithrombin agent heparin. Heparin also reduced MSC-associated in situ thrombosis incorporating platelets and VWF in the microvasculature. Heparin-assisted MSC delivery reduced acute apoptosis and significantly improved infarct size, left ventricular ejection fraction, LV volumes, wall motion and scar formation at 6 weeks post AMI. In addition, this thesis investigated the paracrine factors secreted by MSC, in particular focusing on the effect on cardiac repair of a novel MSC-paracrine factor SPARCL1. In summary this work provides new insight into the mechanism by which MSC may be deleterious when delivered by an IC route and a means of abrogating this effect. Moreover we present new data on the MSC secretome with elucidation of the challenges encountered using a single paracrine factor cardiac repair strategy.